Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system

نویسندگان

  • Oscar Castillo
  • Patricia Melin
  • Eduardo Ramírez
  • José Soria
چکیده

In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Intelligent Computing Techniques for the Detection of Sleep Disorders: A Review

Intelligent computing methods and knowledge based systems are well known techniques used for the detection of various medical disorders. This paper is based on the review of various intelligent computing methods that are used to detect sleep disorders. The main concern is based on the detection of sleep disorders such as sleep apnea, insomnia, parasomnia and snoring. The most common diagnostic ...

متن کامل

Trust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic

Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...

متن کامل

Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System

Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012